2024年动作电位是钠离子内流还是外流:动作电位钠离子内流是什么运输方式
动作 2024年11月20日 05:29:21 3399youxi
生理题,动作电位为什么是Na+的平衡电位.
“动作电位是钠的平衡电位” 这一说法严格来说不准确。
这是产生后电位的原因)值得强调的是,动作电位的产生不耗能,但其恢复由于有钠钾泵的参与所以耗能。动作电位的产生主要与钠离子内流有关,所以这个值基本与钠离子平衡电位相等。
动作电位是钠离子内流。动作电位的产生机制是,在静息状态下细胞膜外的钠离子,会向膜内扩散,钠离子大量内流,可以导致膜内负电位因为正电荷的增加逐渐消失,使膜内电位由正电位向负电位发展,以后逐渐恢复到静息电位水平。动作电位纳离子内流为协助扩散,需要载体蛋白,顺浓度梯度。
k离子达平衡电位,膜电位也达到静息电位。同理动作电位峰值也是Na离子跨膜浓度差与电位差相等形成的,即Na离子达平衡电位。
原因:动作电位是神经受外界刺激之后,钠离子通道打开,钠离子内流形成,所以当细胞外钠离子浓度升高时时,钠离子内流的量增多,动作电位就增大了。动作电位指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。
从动作电位到静息电位,离子是什么运输?
1、当从动作电位恢复到静息电位时,需要排Na+吸k+,此时是逆着浓度梯度的,就需要消耗ATP,是主动运输,这也是我们经常看到的钾钠泵.静息时,钾离子外流,电位是内负外正。钾离子外流后,膜内的钾离子多.同理,兴奋时,钠离子内流,电位是内正外负。
2、有主动运输,有协助扩散。电位的形成依赖各种离子通道蛋白,钠钾离子一般是顺浓度梯度通过离子通道蛋白。静息电位是由于钾离子通道蛋白对钾离子的协助扩散形成的,这时钠离子通道蛋白对钠离子通透很低。动作电位时钠离子通道蛋白被激活,钠离子顺浓度通过钠离子通道蛋白协助扩散进入细胞,形成动作电位。
3、静息电位时:K离子的外流是主动运输。动作电位Na离子的内流是被动运输。解析:静息状态时,K离子,Na离子的运输都是主动运输,需要载体和能量。当神经细胞受到阈刺激产生动作电位时,膜的通透性打开,此时离子的内流和外出是顺浓度递度进行,不需载体和能量。
4、首先纠正你的一个说法,离子进出细胞可以是协助扩散(顺浓度梯度),也可以是主动运输(逆浓度梯度)。在动作电位产生和恢复到静息电位的过程中,既有协助扩散,又有主动运输。活细胞的细胞内外的钠钾浓度是不一样的,细胞外钠离子浓度高,细胞内钾离子浓度高(离子的细胞内外浓度比相对稳定)。
5、动作电位一旦完成,钠离子通道即关闭。要想恢复为静息电位内负外正,只能通过钾离子外流,这时是协助扩散,而这时仅是电位的恢复,还要通过钠钾泵钾离子泵入钠离子出,才能完全恢复为原先的静息状态,方便接受下一次的刺激,这是主动运输。
生物的动作电位问题
1、动作电位的产生是钠离子内流,而钠离子的内流是主动运输过程,也就是运输速率与浓度差无关。但为什么浓度差增大,动作电位峰值也大呢?因为钠离子运输实质是钠钾泵,离子越多,同时激活的钠离子通道就多,钠离子内流的速度就越快。
2、如果阻断钠离子内流,给予刺激,膜内外电位为静息电位外正内负,无法产生动作电位钾离子通道未关闭,钾离子可外流,但只是少量。静息电位下,如果阻断钾离子外流,膜电位为外负内正。静息电位是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。它是一切生物电产生和变化的基础。
3、揭开细胞电活动的神秘面纱:静息电位与动作电位/ 静息电位:细胞的休息状态细胞的“静息电位”是它在未受刺激时的电位特性,表现为外正内负的极化状态。
4、静息电位也被称为K+的平衡电位。动作电位 动作电位是在可兴奋细胞受到刺激时,在静息电位基础上发生的一次快速扩布性电位变化。动作电位的产生条件包括细胞膜内外离子分布的不平衡以及膜对离子通透性的选择性。细胞内外存在着Na+浓度差,Na+在细胞外的浓度是细胞内的13倍之多。
5、Na+爆发性内流)→基本达到Na+平衡电位(膜内为正膜外为负,因有少量钾离子外流导致最大值只是几乎接近钠离子平衡电位)(形成动作电位上升支)。 膜去极化达一定电位水平→Na+内流停止、K+迅速外流(形成动作电位下降支)。
动作电位是钠离子内流吗?
1、动作电位由钠离子内流造成的。恢复过程中纳离子外流、钾离子内流。要知道细胞外液纳离子浓度高于细胞内(20:1)细胞内钾离子浓度高于细胞外(30:1)。其中静息电位钾离子外流为协助扩散,需要载体蛋白,顺浓度梯度。动作电位纳离子内流为协助扩散,需要载体蛋白,顺浓度梯度。
2、动作电位是钠离子内流。动作电位的产生机制:在静息状态时,细胞膜外Na+浓度大于膜内,Na+有向膜内扩散的趋势,而且静息时膜内存在着相当数值的负电位,这种电场力也吸引Na+向膜内移动。动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。
3、动作电位的产生是钠离子内流,而钠离子的内流是主动运输过程,也就是运输速率与浓度差无关。但为什么浓度差增大,动作电位峰值也大呢?因为钠离子运输实质是钠钾泵,离子越多,同时激活的钠离子通道就多,钠离子内流的速度就越快。
4、不是的。当从动作电位恢复到静息电位时,需要排Na+吸k+,此时是逆着浓度梯度的,就需要消耗ATP,是主动运输,这也是我们经常看到的钾钠泵.静息时,钾离子外流,电位是内负外正.钾离子外流后,膜内的钾离子多.同理,兴奋时,钠离子内流,电位是内正外负。膜外的钠离子多。
5、由膜外钠离子内流决定,因为钾离子存在于细胞内而钠离子存在与细胞外,钠离子得内流带了大量的正电导致膜内的电位由正变负,此时是内正外负,然而细胞内需要维持其稳态,所以钠离子的内流会有一个峰值。
6、动作电位是钠离子内流。动作电位时,钠离子通道打开,钠离子内流(从高浓度到低浓度),也属于协助扩散。
动作电位的复极化过程为什么不是由钠离子外流形成的?
动作电位的复极化过程不是由钠离子外流形成的,而是由钾离子内流形成的。在动作电位的上升阶段(即去极化过程),钠离子通过神经细胞膜上的钠离子通道迅速内流,导致细胞内电位迅速升高。
不是的。当从动作电位恢复到静息电位时,需要排Na+吸k+,此时是逆着浓度梯度的,就需要消耗ATP,是主动运输,这也是我们经常看到的钾钠泵.静息时,钾离子外流,电位是内负外正.钾离子外流后,膜内的钾离子多.同理,兴奋时,钠离子内流,电位是内正外负。膜外的钠离子多。
动作电位是钠离子内流。动作电位的产生机制是,在静息状态下细胞膜外的钠离子,会向膜内扩散,钠离子大量内流,可以导致膜内负电位因为正电荷的增加逐渐消失,使膜内电位由正电位向负电位发展,以后逐渐恢复到静息电位水平。动作电位纳离子内流为协助扩散,需要载体蛋白,顺浓度梯度。
总之,动作电位的去极化是由于大量的钠通道开放引起的钠离子大量、快速内流所致;复极化则是由大量钾通道开放引起钾离子快速外流的结果。
或者说包括去极化和复极化两个时相。当细胞接受到外界刺激时,钠离子通道打开,引起钠离子瞬间大量内流,这使得静息电位减小乃至消失,称为去极化过程。钠离子进一步内流可以形成瞬间内正外负的动作电位,称为质膜的反极化,当钠离子内外平衡时,动作电位随即达道最大值。
动作电位是什么离子内流
1、动作电位是钠离子内流。动作电位的产生机制:在静息状态时,细胞膜外Na+浓度大于膜内,Na+有向膜内扩散的趋势,而且静息时膜内存在着相当数值的负电位,这种电场力也吸引Na+向膜内移动。动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。
2、动作电位是钠离子内流。动作电位时,钠离子通道打开,钠离子内流(从高浓度到低浓度),也属于协助扩散。
3、动作电位由钠离子内流造成的。恢复过程中纳离子外流、钾离子内流。要知道细胞外液纳离子浓度高于细胞内(20:1)细胞内钾离子浓度高于细胞外(30:1)。其中静息电位钾离子外流为协助扩散,需要载体蛋白,顺浓度梯度。动作电位纳离子内流为协助扩散,需要载体蛋白,顺浓度梯度。
4、动作电位是钠离子内流。动作电位的产生机制是,在静息状态下细胞膜外的钠离子,会向膜内扩散,钠离子大量内流,可以导致膜内负电位因为正电荷的增加逐渐消失,使膜内电位由正电位向负电位发展,以后逐渐恢复到静息电位水平。动作电位纳离子内流为协助扩散,需要载体蛋白,顺浓度梯度。
5、动作电位的产生是钠离子内流,而钠离子的内流是主动运输过程,也就是运输速率与浓度差无关。但为什么浓度差增大,动作电位峰值也大呢?因为钠离子运输实质是钠钾泵,离子越多,同时激活的钠离子通道就多,钠离子内流的速度就越快。
6、当从动作电位恢复到静息电位时,需要排Na+吸k+,此时是逆着浓度梯度的,就需要消耗ATP,是主动运输,这也是我们经常看到的钾钠泵.静息时,钾离子外流,电位是内负外正.钾离子外流后,膜内的钾离子多.同理,兴奋时,钠离子内流,电位是内正外负。膜外的钠离子多。