动作电位去极化的幅度接近于(动作电位的去极化是由于什么形成的)
动作 2024年10月14日 04:25:12 3399youxi
生理学理论指导:动作电位及其产生机制
1、【答案】:动作电位是膜受到刺激后在原有静息电位基础上发生的一次膜两侧电位的快速而可逆的倒转和复原。由锋电位和后电位两部分构成。锋电位包括上升支(去极相)和下降支(复极相)两部分。由于后电位在说明细胞兴奋的产生和传播上的意义不大,因此常以锋电位来代表动作电位。
2、【答案】:动作电位是细胞受刺激时细胞膜产生的一次可逆的并且是可传导的电位变化,它包括锋电位和后电位。动作电位产生的机制是:①有效刺激使膜对Na+的通透性增加→Na+顺浓度梯度部分内流→膜产生部分去极化→达阈电位→Na+通道大量开放→Na+快速内流→膜电位急剧升高→形成动作电位的上升支。
3、动作电位产生的机制 动作电位产生的机制与静息电位相似,都与细胞膜的通透性及离子转运有关。l.去极化过程当细胞受刺激而兴奋时,膜对Na+通透性增大,对K+通透性减小,于是细胞外的Na+便会顺其波度梯度和电梯度向胞内扩散,导致膜内负电位减小,直至膜内电位比膜外高,形成内正外负的反极化状态。
4、二)动作电位的产生机制 动作电位上升支主要由Na+内流形成,接近于Na+的电-化学平衡电位。细胞内外Na+和K+的分布不均匀,细胞外高Na+而细胞内高K+。细胞兴奋时,膜对Na+有选择性通透,Na+顺浓度梯度内流,形成锋电位的上升支。K+外流增加形成了动作电位的下降支。
5、动作电位的产生机制是静息状态时,细胞膜外Na+浓度大于膜内,Na+有向膜内扩散的趋势,而且静息时膜内存在着相当数值的负电位,这种电场力也吸引Na+向膜内移动。
神经细胞动作电位的幅度接近于()
1、神经细胞动作电位的幅度接近于静息电位绝对值与钠平衡电位之和(E对)。神经细胞在接受到阈刺激或阈上刺激时,细胞膜上电压门控Na通道大量被激活,造成Na离子大量内流,动作电位去极化,直至达到了Na的平衡电位水平这个过程才停止,形成了动作电位的上升支。
2、分析:动作电位是神经纤维在静息电位基础上,接受外来刺激时产生的连续的膜电位变化过程,可分为上升相和下降相。动作电位处于上升相最高点时的膜电位接近于钠的平衡电位;静息电位为静息时膜内外两侧的电位差。因此动作电位的幅度接近于静息电位绝对值与钠平衡电位之和。
3、【答案】:CNa的平衡电位的数值接近于动作电位的超射值。动作电位的幅度相当于静息电位的绝对值与超射值之和,故动作电位的幅度接近于K平衡电位和Na平衡电位之和。
4、静息电位绝对值与Na+的平衡电位之和。神经细胞动作电位超射的顶点接近于Na+平衡电位。神经细胞的静息电位约为一65mV,当受到刺激发生兴奋时,Na+通道开放,大量Na+内流,经过零电位并超射,直至接近Na+平衡电位(+50mV),因而动作电位的幅度接近于静息电位绝对值(65mV)与Na+平衡电位(50mV)之和。
5、伍带动作电位是神经纤维在静息电位基础上,接受外来刺激时产生的连续的膜电位变化过程,可分为上升相和下降相。 动作电位处于上升相最高点时的膜电位接近于钠的平衡电位。 静息电位为静息时膜内腔与外两侧的电位差。 因此动作电位的幅度接近于静息电位绝对值与钠平衡电位之和。
动作电位名词解释
1、动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。动作电位由峰电位(迅速去极化上升支和迅速复极化下降支的总称)和后电位(缓慢的电位变化,包括负后电位和正后电位)组成。
2、动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。动作电位由峰电位和后电位缓慢的电位变化,包括负后电位和正后电位组成。峰电位是动作电位的主要组成成分,因此通常意义的动作电位主要指峰电位。
3、动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。什么是动作电位 动作电位是指可兴奋细胞受到有效刺激时,其膜电位在静息电位的基础上产生的一次快速而可逆的电位变化过程,包括峰电位和后电位。
神经传导形成原理
神经传导的形成机制涉及到细胞内外离子浓度的动态平衡以及细胞膜上特定通道的作用。细胞外的钠离子浓度远高于细胞内,自然倾向于向内扩散。然而,这种扩散是否发生则由细胞膜上的钠通道决定。
当细胞受到刺激产生兴奋时,测单一神经纤维静息和动作电位的实验模式图首先是少量兴奋性较高的钠通道开放,很少量钠离子顺浓度差进人细胞,致使膜两侧的电位差减小,产生一定程度的去极化。
【答案】:神经纤维兴奋传导的原理可用局部电流学说来解释。(1) 无髓纤维:当纤维上某一局部兴奋时,其膜的两侧电位暂时倒转,即变为内正外负,而相邻未兴奋区的膜仍处于内负外正,这样在兴奋区与邻近未兴奋区之间出现了电位差。
神经冲动的传导过程是电化学的过程,是在神经纤维上顺序发生的电化学变化。神经受到刺激时,细胞膜的透性发生急剧变化。
高中生物关于动作电位
如果阻断钠离子内流,给予刺激,膜内外电位为静息电位外正内负,无法产生动作电位钾离子通道未关闭,钾离子可外流,但只是少量。静息电位下,如果阻断钾离子外流,膜电位为外负内正。静息电位是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。它是一切生物电产生和变化的基础。
揭开细胞电活动的神秘面纱:静息电位与动作电位/ 静息电位:细胞的休息状态细胞的“静息电位”是它在未受刺激时的电位特性,表现为外正内负的极化状态。
如你所知:静息时、细胞的电位是外正内负,所以钾离子会受动电场力的作用,减少向外流。浓度差梯度也是使离子正浓度差流动的动力。刚开始时,钾离子会向外流,当一定的钾离子流出胞外,则胞内外的电场力增大,同时浓度差也相对增大,这样两个力处于平衡时,则钾的流出量与流用量相等啦。
神经细胞处去动作电位时,外负内正,正的往负这边跑,所以外面的钠离子浓度比内部多。当静息电位变为动作电位时,钾离子外流,钠离子内流,属于协助扩散。当动作电位恢复为静息电位时,要把细胞内多余的钠离子泵出去,细胞外多余的钾离子泵进来,所以需要借助一个钠-钾泵,是主动运输。
简述动作点位各期及形成机制
机制是:心肌细胞膜对钠离子的通透性迅速下降,加上快钠通道关闭,钠离子停止内流。同时膜外钾离子快速外流,造成膜内外电位差,与0期构成锋电位。 2)2期(平台期):膜电位复极缓慢,电位接近于0mV水平,故成为平台期。平台期是心肌特有的时期。
③局部反应可以总合,即多个局部电位可叠加起来达到阈电位而引起动作电位。局部电位除了上述的去极化形式外,还可表现为超极化的形式。
心室肌细胞的动作电位活动共可分5期:分别是0期、1期、2期、3期、4期。