骨骼肌动作电位的形成(骨骼肌动作电位形成的机制及特点)
动作 2024年10月23日 04:58:29 3399youxi
什么是骨骼肌的兴奋—收缩藕联?它包括那些过程?
【答案】:肌肉收缩前,首先出现的是肌膜上的动作电位,因此在肌膜的电位变化和肌丝滑行引起的肌肉收缩之间,必定存在着某种中介过程把二者联系起来,这一过程称为兴奋-收缩耦联。耦联因子是Ca2+,耦联主要是通过三个过程。(1)肌膜兴奋时,动作电位通过横管、管膜一直传播到肌细胞的内部,深入到终池近旁。
骨骼肌发生兴奋,在膜上出现动作电位后,在细胞内部则发生肌小节的缩短导致收缩,后者是由前者触发引起的。兴奋(动作电位)触发收缩(肌小节缩短)的中介过程,称为兴奋-收缩耦联。目前知道,肌膜的动作电位可以传导到横管膜从而深入到终池近旁。
这样,将以膜的电变化为特征的兴奋过程和以肌纤维机械变化为基础的收缩过程两者联系起来的中介性过程,称为兴奋-收缩耦联。目前认为,骨骼肌的兴奋-收缩耦联至少包括三个主要步骤:电兴奋通过横管系统传向肌细胞的深处;三联管结构处的信息传递;肌质网(即纵管系统)对Ca2+释放和再蓄积。
简述骨骼肌细胞和心室肌细胞的动作电位以及形成机制的异同
1、最大的不同点:心室肌的绝对不应期长,不会产生强直收缩。
2、当可兴奋骨骼肌细胞受刺激而兴奋时,首先是受刺激的局部细胞膜上的Na+通道开放,膜外Na+内流,使细胞膜局部去极化,当去极化达到阈电位时,导致细胞膜上Na+通道突然大量开放,Na+大量、快速地内流,形成上升的去极相。
3、【答案】:A 该题考查的是生理学-循环系统-电生理知识点。心室肌细胞动作电位分四期:1期(快速复极初期):心肌细胞膜电位在除极达到顶峰后,由原来的+30mV迅速下降至0mV,与0期除极构成了锋电位。2期(平台期):膜电位复极缓慢,电位接近于0mV水平,故成为平台期。
4、心肌和骨骼肌的区别在于神经支配不同、结构特点不同、是否可以自主节律性收缩、是否可以随意运动。神经支配不同:心肌细胞由植物神经支配,可以帮助心脏供血,而骨骼肌细胞由躯体运动神经支配,主要可以产生运动。
5、动作电位 概念:动作电位(AP)是指细胞在静息电位基础上接受有效刺激后产生的一个迅速的可向远处传播的膜电位波动。
6、简述动作电位的产生机制如下:动作电位是细胞受到一定强度的刺激后跨膜电位由静息电位内负外正的状态向内正外负的方向转变。骨骼肌:阈刺激或阈上刺激达到阈电位;Na离子通道开放Na内流→动作电位上升支;K离子外流→复极相;Na--K泵活动使细胞膜恢复到静息状态。
骨骼肌细胞的动作电位是如何产生的?试述动作电位与骨骼肌细胞收缩的关...
1、这个把肌细胞的电兴奋与肌细胞机械收缩衔接起来的中介过程,称为兴奋收缩耦联。具体的耦联过程是:首先,细胞质膜的动作电位可直接传遍与其相延续的横管系统的细胞膜。
2、骨骼肌纤维受运动神经纤维的控制,神经纤维受到刺激后,其兴奋延神经纤维以动作电位的形式传导到相应的肌纤维,通过兴奋—收缩耦联,引起肌纤维收缩或舒张。
3、这个把肌细胞的电兴奋与肌细胞机械收缩衔接起来的中介过程,称为兴奋收缩耦联。具体的耦联过程是:首先,细胞膜的动作电位可直接传遍与其相延续的横管系统的细胞膜。
4、当可兴奋骨骼肌细胞受刺激而兴奋时,首先是受刺激的局部细胞膜上的Na+通道开放,膜外Na+内流,使细胞膜局部去极化,当去极化达到阈电位时,导致细胞膜上Na+通道突然大量开放,Na+大量、快速地内流,形成上升的去极相。
5、称为兴奋-收缩耦联。其过程是:肌细胞膜动作电位通过横管系统传向肌细胞深处,激活横管膜上的L型Ca2+通道;L型Ca2+通道变构,激活连接肌浆网膜上的Ca2+释放通道,释放Ca2+入胞质;促使细肌丝上肌钙蛋白与Ca2+结合,使原肌凝蛋白发生构型变化,引起肌肉收缩。
为什么骨骼肌终板电位不是动作电位?
综上,骨骼肌终板电位之所以无法转化为动作电位,是由于其特定的结构决定了它只能产生局部兴奋,而非具备动作电位的瞬时强度和广度。这种独特的生理机制,是细胞结构与功能相互作用的精妙体现,值得我们进一步探索。以上观点是基于现有知识的理解,如若发现任何遗漏或谬误,欢迎指正,感谢您的关注与探讨。
其大小与神经末梢释放的Ach量成正比;无不应期,可表现为总和现象。终板膜上无电压门控钠通道,不会产生动作电位。具有局部电位特征的终板电位可通过电紧张电位刺激周围具有电压门控钠通道的肌膜,使之产生动作电位,并传播至整个肌细胞膜。
终板电位是局部电位,可通过电紧张电位刺激周围具有电压门控钠通道的肌膜,使之产生动作电位,使之产生动作电位。
终板电位和突触后电位的区别在于它们分别发生在神经-骨骼肌接头的终板膜和经典突触的突触后膜上。 两者相同的方面是它们都涉及到局部电流的产生。 动作电位与局部电位不同,它具有“全或无”的特征,即电位幅度不会因刺激强度的增加而改变,且在同一细胞上传导时不会衰减。
兴奋以电化学信号的形式传递至接头后膜,导致终板膜电位的变化。 电化学信号的传递过程涉及神经递质的释放,这些递质从接头前膜释放到接头间隙,并扩散至接头后膜上的受体。 神经递质与受体的结合最终引发接头后膜产生动作电位(AP),这一过程称为神经-骨骼肌接头处的兴奋传递。