集合的概念及运算教学视频(集合的概念讲义)
合集 2024年2月29日 10:54:30 3399youxi
数学集合符号及含义
∪:并集。比如,A∪B表示集合A和集合B中所有元素组成的集合 ∩:交集。比如,A∩B表示既在集合A中又在集合B中的所有元素组成的集合 ∈:属于。
数学集合符号都有:N、N+、Z、Q、R、C等。具体介绍如下:全体非负整数的集合通常简称非负整数集(或自然数集),记作N。非负整数集内排除0的集,也称正整数集,记作N+(或N*)。
数学集合符号有N、N+、Z、Q、R、C等。全体非负整数的集合通常简称非负整数集(或自然数集),记作N。非负整数集内排除0的集,也称正整数集,记作N+(或N*)。全体整数的集合通常称作整数集,记作Z。
集合的关系和运算
1、集合的关系及运算如下:集合的基本运算:交集、并集、相对补集、绝对补集、子集。
2、是由R中原有的那些域的列所组成的关系 选择运算:关系S是关系R的一部分,是通过选择之后的结果,从关系中找出满足给定条件的元组的操作 笛卡尔积运算:是用R集合中元素为第一元素,S集合中元素为第二元素构成的有序对。
3、元素与集合的关系有“属于”与“不属于”两种。 集合与集合之间的关系 某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。
4、对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C。
5、例如,如果全集为U = {1, 2, 3, 4, 5},A = {1, 2, 3},则A = {4, 5}。这些基本运算可以帮助我们处理集合中的元素,进行操作和推理,从而更好地理解和描述集合之间的关系。
6、集合间的运算关系我们常用的有三种,交、并、补。下面我们来一一的认识一下他们。交集:设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。
集合的概念
1、非负整数集(自然数集):全体非负整数的集合.记 作N。正整数集:非负整数集内排除0的集.记作N* 或N+。整数集:全体整数的集合.记作Z 有理数集:全体有理数的集合.记作Q。
2、集合的概念是:集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。例如,全中国人的集合,它的元素就是每一个中国人。
3、集合 jíhé [aggregate] 一组具有某种共同性质的数学元素 有理数的集合 数学术语 集合的概念:一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。
4、集合的概念 集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的 元素。例如全中国人的集合,它的元素就是每一个中国人。
5、集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象成为该集合的元素。集合与元素的关系有属于和不属于俩种。
集合的概念与运算
1、集合是指具有某种性质的事物的总体。集合运算法则 并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}。
2、集合的基本运算交集、并集、相对补集、绝对补集、子集。(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集,记作AOB。
3、集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
集合的概念及其基本运算
1、集合的基本运算交集、并集、相对补集、绝对补集、子集。(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集,记作AOB。
2、概念:集合(简称集)是基本的数学概念,是集合论的研究对象,指具有某种特定性质的事物的总体,集合里的事物,叫作元素。
3、集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
4、在数学和计算机科学中,集合是一种基本的数据结构,它用于描述一组相关的对象,并进行各种集合运算。集合的概念和运算广泛应用于逻辑、概率、统计等领域,是数学中不可或缺的重要概念之一。
5、集合是数学中一个基本且重要的概念,它是我们研究集合论、拓扑、实数理论和许多其他数学分支的基础。集合间的运算包括交集、并集、补集、差集等。这些运算是基于集合的交、并、补、差等概念进行操作的。