集合的基本概念与基本运算的区别(集合的基本概念与基本运算的区别和联系)
合集 2024年4月5日 04:26:41 3399youxi
集合的概念及其基本运算
概念:集合(简称集)是基本的数学概念,是集合论的研究对象,指具有某种特定性质的事物的总体,集合里的事物,叫作元素。
集合的基本运算交集、并集、相对补集、绝对补集、子集。(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集,记作AOB。
一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母。
集合是数学中一个基本且重要的概念,它是我们研究集合论、拓扑、实数理论和许多其他数学分支的基础。集合间的运算包括交集、并集、补集、差集等。这些运算是基于集合的交、并、补、差等概念进行操作的。
高一数学集合的基本运算知识点
全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。高一数学集合知识点2 集合间的基本关系子集,A包含于B,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
高一数学集合的基本运算:集合的基本运算,在不同范围研究同一个问题, 可能有不同的结果。如方程(x-2)(x2-3)=0的解集 全集与补集在有理数范围内只有在有理数范围内。集合的有关概念。
高一数学集合知识点:集合的概念、关于集合的元素的特征、元素与集合的关系、常用数集及其记法、集合的分类、集合的表示方法(自然语言法、列举法、描述法)、集合间的基本关系、集合的基本运算(交集、并集、全集、补集)。
集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。
集合的概念和运算
概念:集合(简称集)是基本的数学概念,是集合论的研究对象,指具有某种特定性质的事物的总体,集合里的事物,叫作元素。
集合的基本运算交集、并集、相对补集、绝对补集、子集。(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集,记作AOB。
集合是数学中一个基本且重要的概念,它是我们研究集合论、拓扑、实数理论和许多其他数学分支的基础。集合间的运算包括交集、并集、补集、差集等。这些运算是基于集合的交、并、补、差等概念进行操作的。
集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:分散的人或事物聚集到一起;使聚集:紧急~。数学名词。一组具有某种共同性质的数学元素:有理数的~。 口号 等等。
集合的概念
1、非负整数集(自然数集):全体非负整数的集合.记 作N。正整数集:非负整数集内排除0的集.记作N* 或N+。整数集:全体整数的集合.记作Z 有理数集:全体有理数的集合.记作Q。
2、集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。
3、集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象成为该集合的元素。集合与元素的关系有属于和不属于俩种。
4、N全体非负整数(或自然数)组成的集合;R是实数集;Z是整数集;Q是有理数集;Z*是正整数集;N*是正整数集。集合及运算的概念 集合:一般的,一定范围内某些确定的,不同的对象的全体构成一个集合。
5、集合是指具有某种特定性质的元素组成的整体。集合理论是现代数学的基础之一,它是数学中一个基本而重要的概念。集合有以下几个基本概念: 元素:集合中的单个成员。 空集:没有任何元素的集合,用符号“{}”表示。
集合的概念是什么
集合有关概念 集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
非负整数集(自然数集):全体非负整数的集合.记 作N。正整数集:非负整数集内排除0的集.记作N* 或N+。整数集:全体整数的集合.记作Z 有理数集:全体有理数的集合.记作Q。
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。集合(简称集)是数学中一个基本概念,它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。